eA vs pA: Similarities and Differences, An Experimentalist's Perspective

Mark D. Baker

June 28, 2017

Geometry: N_{part} – an old idea...

Questions From The 1970's

- Mechanism of the Particle Production
- Space-Time Evolution of Production Process

$$N_{part} = \overline{v} + 1$$
 $\overline{v} = \frac{A\sigma_{pp}}{\sigma_{pA}} =$

Average number of mean free paths encountered by inc. particle when crossing the nucleus

W. Busza, 24th Winter Workshop on Nuclear Dynamics (2008)

Mix of pA & πA

$$N_{part} = \overline{v} + 1$$

$$R_A = N_{part}/2 = \frac{1}{2}(1 + \overline{v})$$

W. Busza et al., (E178 A) PRL 34 (1975) 836

26-June-2017

200 GeV p+A (fixed target)

DeMarzo et al., PRD 29 (1984) 2476

FIG. 4. The ratio $R = \langle n \rangle_{pA} / \langle n \rangle_{pp}$ versus the average number $\overline{v}(n_p)$ of projectile collisions for pXe (circles), pAr (triangles), and pNe (squares) collisions. A line of the form $R = 0.5[\overline{v}(n_p) + 1]$ is shown for comparison.

Can also measure $\langle v_{tot} \rangle$

DeMarzo et al., PRD 29 (1984) 2476

FIG. 10. Average number $\overline{\nu}_K$ of secondary collisions in the intranuclear cascade versus the number $\overline{\nu}(n_p)$ of projectile collisions for pXe (circles), pAr (triangles), and pNe (squares) collisions. The curve of the form $(\nu^{1.95}-1)$ is shown for comparison.

 Intranuclear cascading leads to additional collisions:

$$<$$
 $v_{tot}>=<$ $v_{proj}>+<$ $v_{sec}>$

Measure with net charge:

$$= <_{V_{tot}}>Z/A + Z_{proj}$$

RHIC: 10x the \sqrt{s}_{NN}

100+100 GeV/A data from Alver et al. (PHOBOS), PRC 83 (2011) 024913

0-parameter prediction

100+100 GeV/A data from Alver et al. (PHOBOS), PRC 83 (2011) 024913

eA: Basic Quantum Mechanics

1/(2Mr) = 0.12 $\Delta p_z \Delta z = 1/2$

Bauer, Spital, Yennie, Pipkin Rev. Mod. Phys. 50 (1978) 261

Nucleus Rest Frame (b)

 $\lambda_h/r \approx 1/(2Mxr) = 0.12/x_{Bj}$

See e.g. Nikolaev, Zakharov, ZPC 49 (1991) 607

$$p_{z}^{quark} = Mx\gamma$$

$$\Delta z = 1/(2Mx\gamma)$$

$$\Delta z/r^* = 1/(2Mxr)$$

= 0.12/x_{Bi}

For x_{Bj} << 0.12, parton wavefunctions and/or interaction cannot be localized.

Low x eA is γ^*A which is ~ like pA

In the nuclear rest frame:

 γ^* alternates between point-like σ ~0 & a hadronic object ("dipole") σ ~few mb lasting for length $\lambda \sim 1/(2Mx)$

Great! So if the γ^* is hadronic, we can do Glauber like in pA or dA and do geometry tagging to pick out "central" events.

Let's look at
$$N_{part}$$
, $N_{coll} = \overline{v} = \langle v_{proj} \rangle$, $\langle v_{tot} \rangle$

FNAL E665: 490GeV µ+A FixedTgt

E665 @ Fermilab Streamer chamber in FT ideal for this. Muon spectrometer TARGET CVM Streamer Chamber DC5-8 STEEL ABSORBER

Streamer chamber

- Blind to large slow remnants (absorbed in target)
- Sees charged produced particles, evaporated particles, Intranuclear Cascade
- Slow tracks 0.3<β<0.7 are grey (evaporation, INC)
- Data taking rate 1.5 Hz

NA5@CERN: p+Xe 200GeV FixTgt

C. DeMarzo et al. PRD 26 (1982) 1019

FIG. 2. Photograph of a pXe interaction at 200 GeV/c incident momentum.

Very similar Streamer Chamber as E665, Made by the SAME group at MPI, Munich

NA5 s \approx E665 < W²>

Centrality select by grey tracks

Try $N_{part}(\mu A) = \frac{1}{2}(1 + \langle v_{proj} \rangle)$

Data from E665 and NA5, ZPC 65 (1995) 225

Try $N_{part}(\mu A) = <\nu_{proj}>$

Data from E665 and NA5, ZPC 65 (1995) 225

What about total collisions?

Recall:

$$= <_{V_{tot}}>Z/A$$
So $<_{V_{tot}}> = (A/Z)_{Xe}(- Z_{proj})$
 $=2.43 (- Z_{proj})$

E665, ZPC 65 (1995) 225

Multiplicity driven by Total collisions

Data from E665 and NA5, ZPC 65 (1995) 225

E665 & Neutron Detection

Figure 5.1: Location of the SNC experimental setup with respect to the target-vertex area.

Unlike at an EIC, E665 neutron detector had small relative coverage.

Not event-by-event

Warning: E665 data is usually a mix of DIS & diffractive...

PhD Thesis, Henry Clark, Ohio University (1993)

Tag eA w/ Neutrons?

First look:

Zheng, Aschenauer, Lee, Eur.Phys.J.**A50** (2014) 189 10x100 GeV e+Au using DPMJET

BeAGLE – Benchmark eA Generator for LEptoproduction

```
mdbaker@eic0004:BeAGLE
```

```
File Edit Options Buffers Tools Help
 Welcome to BeAGLE - Benchmark eA Generator for LEptoproduction
                                                   EEEEEEE
          BBBBBB EEEEEEE A
                                  GGGGGG LL
              B EE A A
                                          T.T.
          BB
                                   GG
                                                   \mathbf{E}\mathbf{E}
                 EE A A
                                  GG
          BB B
                                          _{
m LL}
                                                   БE
          BBBBB EEEEE AAAAA GG GG LL
                                                  пинан
          BB B EE A A GG G LL
                                                 \mathbf{E}\mathbf{E}
             B EE A A GG G LL
          BB
                                                   \mathbf{E}\mathbf{E}
          BBBBBB EEEEEEE A A GGGGGG LLLLLLL EEEEEEE
  Pre-release version
  Authors: Elke Aschenauer, Mark D. Baker, J.H. Lee, Liang Zheng
  Contact: liangzhphy@gmail.com or mdbaker@mdbpads.com
  This program (previously called DPMJetHybrid) links to:
  DPMJET, PHOJET, & PYTHIA (see version #s below) including also
  LHAPDF for pdfs, and FLUKA & PyQM for conventional nuclear effects
```

BeAGLE

Benchmark eA Generator for LEptoproduction

BeAGLE Structure

From: https://wiki.bnl.gov/eic/index.php/BeAGLE

A hybrid model consisting of DPMJet and PYTHIA with nPDF EPS09.

Nuclear geometry by DPMJet and nPDF provided by EPS09.

Parton level interaction and jet fragmentation completed in PYTHIA.

Nuclear evaporation (gamma & INCascade dexcitation/nuclear fission/fermi break up) treated by DPMJet

Energy loss effect from routine by Accardi, Dupré Salgado&Wiedemann to simulate the nuclear fragmentation effect in cold nuclear matter

Making the map for $\lambda >> R$

Most of the complications in saturation theory are in predicting the dependence on x, Q^2 . With Glauber, we can make a simple map:

Infinite coherence length

Looking up the appropriate $\sigma_{v^*N}(x,Q^2)$

Infinite coherence length

Event-by-event, given x & Q²: E.g. for x=0.001, Q²=1.69 GeV² $R^{(Au/N)}(x\rightarrow 0, Q^2=1.69 GeV^2) \approx 0.711$ $\sigma_{\text{"dipole"}} = 5.16 \text{ mb}$

26-June-2017

$N_{coll}(b)$ for Q²=1.69 GeV²,x<<1

$$\sigma^{A}/\sigma^{N}(x,Q^{2})$$
 $\sigma_{dipole}(x,Q^{2})$ $P(N_{coll},b)$

- Big difference between b=0 &
 b= R_{Au}=6.38 fm at low x,Q²
- Geometry tagging easier.
 Now b is <u>directly</u> correlated with measurable activity
- Enhanced shadowing (& saturation?) at b=0 (recall R=1/N_{coll}).

Effective σ_{dip} from $R_{(A)}^{(EPS09LO)}(x,Q^2)$

Effective σ :
Includes possible effects of $\lambda/R < \infty$ Weak function of x for x<0.01

Effective σ ~1/Q rather than 1/Q² Note: EPS09LO only valid for Q>1.3 GeV

Geometry (b) tagging for e+Pb

n-Tagged ePb (samples scaled to same area)

e+Pb²⁰⁸ collisions at 10 x 40 GeV, $Q^2 > 1$ GeV², y < 0.95, x < 0.002 w/ JLAB 2017-LDRD-6 collaboration V. Morozov et al.

What do we need? (I)

- AA/pA/eA experimentalists: EIC planning as well as trying out forward detection now!
 - eA is NOT cut and dried. Lots of room for applying analysis & detector techniques from pA.
 - Not just measuring 39 "fundamental" structure functions for the theorists.
 - Forward detectors are the "streamer chamber" of a collider. How hermetic can we get?
 - Can we measure net charge <Q_T>, n_{grey}, A'?
 - Something more clever: YOUR IDEA HERE?

What do we need? (II)

- Better e+A simulations.
- BeAGLE plans:
 - Improve handling of (transverse) Fermi momentum
 - May affect dijets / monojets comparison e+A vs e+p
 - Improve description of incoherent: e+A→e+V+X
 - Better dipole cross-section for diffraction
 - Add RAPGAP option (vs. Pythia)
 - Allow handling of UltraPeripheral events
 - Better tune to E665 and current UPC data

What do we need? (III)

- Pedestrian guides to the theory
 - Maps between:
 - Dipole & IMF & light-front approaches
 - Parton saturation & dipole saturation & confinement
 - Shadowing (leading or higher twist) & saturation
 - What is known vs. conjectured?
 - Widely believed vs. controversial
 - What are we trying to prove with our measurements?
 - Is there a "Find the QGP!"-like slogan?

Conclusions

- Lots of interesting work for:
 - Experimentalists of all stripes (AA/pA/p↑p/ep/eA)
 - Model-builders
 - Theorists
- Geometry tagging is potentially powerful, but not straightforward (i.e. fun!)
 - Challenging to model
 - Challenging to build optimal detectors

BACKUPS

שווים eA vs pA

Impact of PARP(91)=k_Trms

Modest changes in PARP(91) are barely visible.

Evaporation neutrons in BeAGLE

Evaporation neutrons in BeAGLE

